

A198985


Decimal expansion of x>0 satisfying 4*x^2+2*cos(x)=3.


2



5, 7, 4, 7, 4, 8, 0, 8, 5, 9, 3, 7, 2, 5, 4, 0, 8, 5, 7, 8, 8, 8, 3, 6, 9, 3, 6, 5, 0, 9, 0, 8, 0, 2, 4, 1, 0, 0, 1, 9, 1, 6, 9, 4, 9, 9, 3, 9, 2, 4, 4, 9, 2, 9, 6, 7, 4, 3, 8, 2, 6, 6, 3, 0, 7, 1, 7, 5, 4, 0, 3, 8, 3, 0, 9, 4, 3, 0, 5, 1, 2, 3, 4, 1, 0, 5, 4, 7, 6, 0, 9, 3, 3, 8, 0, 8, 9, 2, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A198755 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.57474808593725408578883693650908024100...


MATHEMATICA

a = 4; b = 2; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .57, .58}, WorkingPrecision > 110]
RealDigits[r] (* A198985 *)


CROSSREFS

Cf. A198755.
Sequence in context: A343039 A021178 A201506 * A021639 A232975 A198998
Adjacent sequences: A198982 A198983 A198984 * A198986 A198987 A198988


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 01 2011


STATUS

approved



