login
A198220
Decimal expansion of least x having 3*x^2+x=4*cos(x).
3
1, 0, 1, 9, 0, 9, 2, 5, 0, 2, 8, 1, 5, 4, 1, 8, 0, 6, 7, 9, 8, 4, 1, 7, 9, 1, 2, 6, 0, 8, 9, 8, 5, 9, 0, 3, 6, 9, 6, 2, 2, 3, 0, 4, 4, 2, 0, 6, 4, 4, 7, 2, 2, 9, 4, 8, 2, 0, 6, 4, 1, 7, 4, 3, 6, 4, 6, 3, 9, 2, 2, 2, 2, 2, 8, 3, 2, 4, 7, 7, 8, 9, 1, 6, 3, 7, 3, 7, 3, 9, 3, 4, 6, 3, 8, 0, 8, 7, 1
OFFSET
1,4
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.0190925028154180679841791260898590369...
greatest x: 0.807678482427210650918057213078375663...
MATHEMATICA
a = 3; b = 1; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.1, -1}, WorkingPrecision -> 110]
RealDigits[r1] (* A198220 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
RealDigits[r2] (* A198221 *)
CROSSREFS
Cf. A197737.
Sequence in context: A248724 A371649 A278144 * A131566 A264156 A160576
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved