login
A198218
Decimal expansion of least x having 3*x^2+x=3*cos(x).
3
9, 4, 8, 2, 5, 4, 6, 0, 7, 7, 3, 9, 1, 7, 3, 6, 6, 2, 9, 6, 4, 1, 7, 3, 3, 3, 4, 7, 5, 5, 7, 4, 6, 5, 0, 3, 6, 9, 4, 7, 2, 8, 0, 3, 9, 9, 1, 4, 4, 6, 9, 1, 8, 4, 1, 1, 3, 2, 2, 3, 4, 4, 2, 7, 1, 1, 1, 7, 5, 7, 6, 5, 3, 9, 9, 3, 4, 2, 0, 9, 7, 3, 1, 8, 5, 1, 5, 6, 4, 2, 6, 7, 6, 1, 2, 2, 3, 1, 4
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.9482546077391736629641733347557465036...
greatest x: 0.7172851708025793726802507282821169153444...
MATHEMATICA
a = 3; b = 1; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
RealDigits[r1] (* A198218 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
RealDigits[r2] (* A198219 *)
CROSSREFS
Cf. A197737.
Sequence in context: A268315 A019659 A155821 * A238183 A242712 A010541
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved