login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197989
Number of binary arrangements of total n 1's, without adjacent 1's on n X n array connected n-s
4
1, 4, 45, 886, 24395, 860336, 36914493, 1863645610, 108131503623, 7085585223652, 517329551346608, 41634263983867842, 3661077644199252550, 349191617521920855488, 35902782820742394839453, 3958207187579046500083794, 465777357329812920074875295
OFFSET
1,2
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, p.373-381
FORMULA
Asymptotic (V. Kotesovec, Oct 15 2011): a(n) ~ n^(2n)/n!*exp(-3/2).
MATHEMATICA
permopak[part_, k_]:=(hist=ConstantArray[0, k];
Do[hist[[part[[t]]]]++, {t, 1, Length[part]}];
(Length[part])!/Product[(hist[[t]])!, {t, 1, k}]);
waz1n[k_, n_]:=(If[n-k+1<k, 0, Binomial[n-k+1, k]]);
semiwaz[k_, n_]:=(psum=0;
Do[p=IntegerPartitions[k, {size}];
psum=psum+Sum[permopak[p[[i]], k]*Binomial[n, Length[p[[i]]]]*Product[waz1n[p[[i, j]], n] , {j, 1, Length[p[[i]]]}], {i, 1, Length[p]}], {size, 1, n}];
psum);
Table[semiwaz[n, n], {n, 1, 25}]
CROSSREFS
Sequence in context: A107668 A214400 A360344 * A377830 A379700 A338456
KEYWORD
nonn,nice,hard
AUTHOR
Vaclav Kotesovec, Oct 20 2011
STATUS
approved