Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 12 2015 11:00:27
%S 1,4,45,886,24395,860336,36914493,1863645610,108131503623,
%T 7085585223652,517329551346608,41634263983867842,3661077644199252550,
%U 349191617521920855488,35902782820742394839453,3958207187579046500083794,465777357329812920074875295
%N Number of binary arrangements of total n 1's, without adjacent 1's on n X n array connected n-s
%H Vaclav Kotesovec, <a href="/A197989/b197989.txt">Table of n, a(n) for n = 1..108</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, p.373-381
%F Asymptotic (V. Kotesovec, Oct 15 2011): a(n) ~ n^(2n)/n!*exp(-3/2).
%t permopak[part_,k_]:=(hist=ConstantArray[0,k];
%t Do[hist[[part[[t]]]]++,{t,1,Length[part]}];
%t (Length[part])!/Product[(hist[[t]])!,{t,1,k}]);
%t waz1n[k_,n_]:=(If[n-k+1<k,0,Binomial[n-k+1,k]]);
%t semiwaz[k_,n_]:=(psum=0;
%t Do[p=IntegerPartitions[k,{size}];
%t psum=psum+Sum[permopak[p[[i]],k]*Binomial[n,Length[p[[i]]]]*Product[waz1n[p[[i,j]],n] ,{j,1,Length[p[[i]]]}], {i,1,Length[p]}],{size,1,n}];
%t psum);
%t Table[semiwaz[n,n],{n,1,25}]
%Y Cf. A067966, A197990.
%K nonn,nice,hard
%O 1,2
%A _Vaclav Kotesovec_, Oct 20 2011