login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197990 Number of binary arrangements of total n 1's, without adjacent 1's on n X n torus connected n-s 1
1, 4, 27, 664, 19375, 712536, 31474709, 1623421808, 95752130751, 6356272757680, 468976366239799, 38071162011854412, 3372179632719015287, 323631920261745650114, 33452466695808298399785, 3705187274710433648959456, 437779689881887196512539391 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..17.

V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 408.

FORMULA

Explicit formula (V. Kotesovec, Oct 14 2011): a(n) = n*binomial(n^2-n-1,n-1)+n*(-1)^n, n>1

MATHEMATICA

permopak[part_, k_]:=(hist=ConstantArray[0, k];

Do[hist[[part[[t]]]]++, {t, 1, Length[part]}];

(Length[part])!/Product[(hist[[t]])!, {t, 1, k}]);

waz1t[k_, n_]:=(If[n-k+1<k, 0, Binomial[n-k+1, k]-Binomial[n-k-1, k-2]]);

semiwazt[k_, n_]:=(psum=0;

Do[p=IntegerPartitions[k, {size}];

psum=psum+Sum[permopak[p[[i]], k]*Binomial[n, Length[p[[i]]]]*Product[waz1t[p[[i, j]], n], {j, 1, Length[p[[i]]]}], {i, 1, Length[p]}], {size, 1, n}]; psum);

Table[semiwazt[n, n], {n, 1, 25}]

Join[{1}, Table[n Binomial[n^2-n-1, n-1]+n (-1)^n, {n, 2, 20}]] (* Harvey P. Dale, Nov 24 2016 *)

CROSSREFS

Cf. A067961, A197989

Sequence in context: A133018 A210343 A104168 * A068327 A066842 A133032

Adjacent sequences:  A197987 A197988 A197989 * A197991 A197992 A197993

KEYWORD

nonn,nice

AUTHOR

Vaclav Kotesovec, Oct 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:31 EDT 2022. Contains 353826 sequences. (Running on oeis4.)