login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A197904
a(n) = ceiling((n+1/n)^5).
3
32, 98, 412, 1387, 3803, 8918, 18594, 35410, 62786, 105102, 167817, 257593, 382409, 551685, 776401, 1069217, 1444593, 1918909, 2510585, 3240201, 4130617, 5207093, 6497409, 8031985, 9844001, 11969517, 14447593, 17320409, 20633385, 24435301, 28778417, 33718593
OFFSET
1,1
FORMULA
a(n) = n^5 + 5n^3 + 10n for n > 10. [Charles R Greathouse IV, Nov 21 2011]
G.f.: (167817 - 749309 x + 1354106 x^2 - 1235214 x^3 + 567821 x^4 -
105101 x^5)/(-1 + x)^6 - Harvey P. Dale, Jul 10 2021
MAPLE
A197904:=n->ceil((n+1/n)^5): seq(A197904(n), n=1..40); # Wesley Ivan Hurt, Apr 23 2017
MATHEMATICA
Table[Ceiling[(n+1/n)^5], {n, 50}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {32, 98, 412, 1387, 3803, 8918, 18594, 35410, 62786, 105102, 167817, 257593, 382409, 551685, 776401, 1069217}, 40] (* Harvey P. Dale, Jul 10 2021 *)
PROG
(Magma) [Ceiling((n+1/n)^5): n in [1..50]]
(PARI) a(n)=ceil((n+1/n)^5) \\ Charles R Greathouse IV, Nov 21 2011
CROSSREFS
Cf. A014058.
Sequence in context: A039519 A190176 A198070 * A273554 A218901 A192293
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 19 2011
STATUS
approved