

A197701


Decimal expansion of Pi/(1 + 4*Pi).


2



2, 3, 1, 5, 7, 2, 0, 7, 9, 4, 3, 7, 7, 0, 9, 7, 2, 1, 6, 0, 6, 2, 8, 9, 1, 1, 4, 5, 5, 1, 1, 3, 1, 2, 3, 0, 8, 9, 3, 0, 5, 4, 4, 3, 8, 1, 6, 8, 6, 5, 5, 2, 5, 2, 2, 8, 3, 8, 8, 4, 2, 4, 7, 9, 9, 2, 4, 0, 9, 7, 2, 9, 9, 7, 4, 0, 5, 9, 2, 3, 2, 7, 5, 6, 6, 1, 8, 4, 5, 6, 7, 2, 9, 1, 6, 5, 7, 3, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/2 and c=2*Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x = 0.2315720794377097216062891145511312308...


MATHEMATICA

b = 1/2; c = 2*Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .23, .24}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197701 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, .8}]


CROSSREFS

Cf. A197682.
Sequence in context: A214392 A071975 A182659 * A292770 A242107 A242108
Adjacent sequences: A197698 A197699 A197700 * A197702 A197703 A197704


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 17 2011


STATUS

approved



