login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197605
Floor( ( n + 1/n )^6 ).
2
64, 244, 1371, 5892, 19770, 54992, 132810, 287700, 572042, 1061520, 1861242, 3112580, 5000730, 7762992, 11697770, 17174292, 24643050, 34646960, 47833242, 64966020, 86939642, 114792720, 149722890, 193102292, 246493770, 311667792, 390620090, 485590020
OFFSET
1,1
FORMULA
For n > 3, a(n) = n^6 + 6n^4 + 15n^2 + 20. [Charles R Greathouse IV, Dec 27 2011]
G.f.: x*(64-204*x+1007*x^2-821*x^3+1017*x^4-455*x^5+125*x^6-15*x^7+3*x^8-x^9)/(1-x)^7. - Vincenzo Librandi, Dec 18 2014
MATHEMATICA
Table[Floor[(n + 1/n)^6], {n, 40}] (* T. D. Noe, Dec 27 2011 *)
CoefficientList[Series[(64 - 204 x + 1007 x^2 - 821 x^3 + 1017 x^4 - 455 x^5 + 125 x^6 - 15 x^7 + 3 x^8 - x^9) / (1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2014 *)
PROG
(Magma) [Floor((n+1/n)^6): n in [1..40]]
(PARI) a(n)=if(n>3, n^6+6*n^4+15*n^2+20, [64, 244, 1371][n]) \\ Charles R Greathouse IV, Dec 27 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 18 2011
STATUS
approved