login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Floor( ( n + 1/n )^6 ).
2

%I #21 Sep 08 2022 08:45:59

%S 64,244,1371,5892,19770,54992,132810,287700,572042,1061520,1861242,

%T 3112580,5000730,7762992,11697770,17174292,24643050,34646960,47833242,

%U 64966020,86939642,114792720,149722890,193102292,246493770,311667792,390620090,485590020

%N Floor( ( n + 1/n )^6 ).

%H Vincenzo Librandi, <a href="/A197605/b197605.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F For n > 3, a(n) = n^6 + 6n^4 + 15n^2 + 20. [_Charles R Greathouse IV_, Dec 27 2011]

%F G.f.: x*(64-204*x+1007*x^2-821*x^3+1017*x^4-455*x^5+125*x^6-15*x^7+3*x^8-x^9)/(1-x)^7. - _Vincenzo Librandi_, Dec 18 2014

%t Table[Floor[(n + 1/n)^6], {n, 40}] (* _T. D. Noe_, Dec 27 2011 *)

%t CoefficientList[Series[(64 - 204 x + 1007 x^2 - 821 x^3 + 1017 x^4 - 455 x^5 + 125 x^6 - 15 x^7 + 3 x^8 - x^9) / (1 - x)^7, {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 18 2014 *)

%o (Magma) [Floor((n+1/n)^6): n in [1..40]]

%o (PARI) a(n)=if(n>3,n^6+6*n^4+15*n^2+20,[64,244,1371][n]) \\ _Charles R Greathouse IV_, Dec 27 2011

%Y Cf. A014052, A197602, A197603, A197604.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Oct 18 2011