

A197411


Decimal expansion of least x>0 having sin(pi*x/4)=(sin 2x/3)^2.


2



2, 1, 9, 4, 2, 3, 2, 9, 1, 9, 0, 1, 6, 9, 1, 9, 1, 4, 4, 4, 7, 4, 1, 6, 4, 0, 9, 4, 9, 3, 4, 0, 8, 4, 2, 1, 5, 8, 8, 8, 0, 2, 1, 6, 0, 3, 0, 6, 8, 3, 7, 9, 9, 6, 9, 1, 4, 7, 7, 4, 8, 0, 0, 9, 3, 5, 2, 7, 5, 8, 6, 8, 6, 0, 7, 7, 7, 8, 5, 9, 5, 4, 3, 6, 7, 3, 0, 8, 6, 2, 5, 8, 2, 9, 9, 8, 8, 7, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=2.1942329190169191444741640949340842158...


MATHEMATICA

b = Pi/4; c = 2/3; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 2.19, 2.195},
WorkingPrecision > 200]
RealDigits[t] (* A197411 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 3.1}]


CROSSREFS

Cf. A197133.
Sequence in context: A249264 A188108 A166890 * A124905 A293417 A295737
Adjacent sequences: A197408 A197409 A197410 * A197412 A197413 A197414


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 14 2011


STATUS

approved



