login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166890
Triangle, read by rows, that transforms diagonals in the table of coefficients of successive iterations of x*(1+x)^2 (cf. A166888).
6
1, 2, 1, 9, 4, 1, 78, 30, 6, 1, 1038, 364, 63, 8, 1, 18968, 6233, 986, 108, 10, 1, 443595, 139008, 20685, 2072, 165, 12, 1, 12681960, 3833052, 545736, 51494, 3750, 234, 14, 1, 429244197, 126105168, 17365336, 1569920, 107760, 6148, 315, 16, 1, 16801151910
OFFSET
1,2
EXAMPLE
Triangle begins:
1;
2,1;
9,4,1;
78,30,6,1;
1038,364,63,8,1;
18968,6233,986,108,10,1;
443595,139008,20685,2072,165,12,1;
12681960,3833052,545736,51494,3750,234,14,1;
429244197,126105168,17365336,1569920,107760,6148,315,16,1;
16801151910,4824243516,647216568,56661004,3728952,200583,9394,408,18,1;
746998729887,210489178476,27653205177,2361036896,150566205,7768320,343063,13616,513,20,1;
37200237947376,10318212622770,1332422277828,111501524409,6938694600,347030328,14703080,550300,18942,630,22,1; ...
Coefficients in iterations of x*(1+x)^2 form table A166888:
1;
1,2,1;
1,4,10,18,23,22,15,6,1;
1,6,27,102,333,960,2472,5748,12150,23388,40926,64872,92772,...;
1,8,52,300,1578,7692,35094,150978,615939,2393628,8892054,...;
1,10,85,660,4790,32920,215988,1360638,8265613,48585702,...;
1,12,126,1230,11385,101010,864813,7178700,57976074,456783888,...;
1,14,175,2058,23163,251832,2660028,27405798,276215313,...;
1,16,232,3192,42308,544600,6842220,84191772,1017153322,...;
...
This triangle T transforms one diagonal in A166888 into another,
for example: T * A154256 = A119820, T * A119820 = A166889, where
A154256 = [1,2,10,102,1578,32920,864813,27405798,1017153322,...];
A119820 = [1,4,27,300,4790,101010,2660028,84191772,3115739358,...];
A166889 = [1,6,52,660,11385,251832,6842220,221228244,8311401351,...].
PROG
(PARI) {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+2*x^2+x^3+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
CROSSREFS
Cf. columns: A166891, A166892, A166893; A229113 (row sums).
Cf. variants: A135080, A166884.
Sequence in context: A099285 A249264 A188108 * A197411 A124905 A371939
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 22 2009
STATUS
approved