

A197382


Decimal expansion of least x > 0 having sin(Pi*x/4) = sin(Pi*x/6)^2.


2



2, 4, 8, 3, 7, 3, 6, 2, 0, 6, 1, 2, 3, 1, 3, 2, 7, 5, 7, 6, 0, 9, 7, 3, 7, 1, 4, 4, 8, 1, 9, 7, 5, 1, 1, 6, 8, 6, 9, 8, 9, 9, 0, 0, 7, 1, 2, 3, 6, 6, 9, 3, 8, 8, 1, 8, 0, 0, 6, 6, 3, 0, 8, 9, 3, 7, 7, 0, 5, 4, 2, 4, 9, 2, 9, 6, 5, 2, 6, 5, 3, 0, 2, 2, 7, 0, 2, 3, 9, 0, 5, 9, 7, 9, 5, 5, 2, 4, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x > 0 satisfying sin(b*x) = sin(c*x)^2 for selected b and c.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=2.483736206123132757609737144819751168698...


MATHEMATICA

b = Pi/4; c = Pi/6; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 2, 3}, WorkingPrecision > 200]
RealDigits[t] (* A197382 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 3}]


CROSSREFS

Cf. A197133.
Sequence in context: A344534 A050170 A087089 * A332521 A246363 A319268
Adjacent sequences: A197379 A197380 A197381 * A197383 A197384 A197385


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 14 2011


STATUS

approved



