

A197379


Decimal expansion of least x > 0 having sin(Pi*x/3) = sin(Pi*x/4)^2.


2



1, 7, 5, 6, 9, 7, 7, 1, 2, 3, 8, 6, 5, 4, 8, 3, 8, 9, 2, 5, 0, 7, 8, 1, 8, 5, 0, 4, 0, 0, 4, 1, 4, 5, 3, 4, 5, 3, 1, 3, 5, 2, 3, 5, 1, 9, 3, 7, 1, 9, 4, 6, 1, 8, 0, 9, 8, 7, 0, 4, 5, 4, 7, 1, 2, 5, 4, 7, 9, 8, 0, 0, 8, 0, 5, 3, 6, 4, 1, 5, 3, 9, 8, 7, 4, 6, 0, 9, 6, 0, 5, 0, 8, 6, 2, 5, 6, 4, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x > 0 satisfying sin(b*x) = sin(c*x)^2 for selected b and c.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.7569771238654838925078185040041453453135...


MATHEMATICA

b = Pi/3; c = Pi/4; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 2.3, 2.6}, WorkingPrecision > 200]
RealDigits[t] (* A197379 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 2.7}]


CROSSREFS

Cf. A197133.
Sequence in context: A011198 A248200 A110943 * A265288 A171677 A021573
Adjacent sequences: A197376 A197377 A197378 * A197380 A197381 A197382


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 14 2011


STATUS

approved



