

A197282


Decimal expansion of least x>0 having sin(4x)=(sin 8x)^2.


1



2, 4, 8, 2, 0, 2, 9, 3, 0, 5, 3, 6, 7, 1, 0, 5, 5, 1, 0, 9, 2, 9, 7, 9, 2, 1, 7, 3, 8, 9, 8, 0, 7, 3, 2, 1, 7, 3, 3, 4, 9, 4, 7, 5, 1, 3, 2, 5, 8, 2, 3, 9, 5, 5, 5, 9, 3, 4, 7, 5, 1, 8, 2, 3, 9, 5, 7, 8, 9, 0, 9, 7, 2, 7, 9, 5, 8, 9, 2, 3, 5, 6, 4, 4, 1, 7, 3, 6, 1, 2, 1, 1, 9, 9, 9, 7, 5, 8, 4, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=0..99.


EXAMPLE

x=0.2482029305367105510929792173898073217...


MATHEMATICA

b = 4; c = 8; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .3}, WorkingPrecision > 100]
RealDigits[t] (* A197282 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 0.4}]


CROSSREFS

Cf. A197133.
Sequence in context: A097874 A097885 A097892 * A215452 A175131 A033921
Adjacent sequences: A197279 A197280 A197281 * A197283 A197284 A197285


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 12 2011


STATUS

approved



