login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097885
Triangle read by rows: T(n,k) is the number of Motzkin paths of length n with k valleys (n>=0, 0<=k<=floor(n/2)-1; a valley is a downstep followed by an upstep).
3
1, 1, 2, 4, 8, 1, 17, 4, 37, 13, 1, 82, 40, 5, 185, 116, 21, 1, 423, 326, 80, 6, 978, 899, 279, 31, 1, 2283, 2444, 924, 140, 7, 5373, 6578, 2948, 568, 43, 1, 12735, 17576, 9136, 2156, 224, 8, 30372, 46702, 27690, 7777, 1035, 57, 1, 72832, 123568, 82453, 26952, 4422
OFFSET
0,3
COMMENTS
Also, triangle read by rows: T(n,k) is the number of Motzkin paths of length n and having k double rises (i.e. UU's, where U=(1,1)). E.g. T(5,1)=4 counts HUUDD, UUDDH, UUHDD and UUDHD, where U=(1,1), H=(1,0) and D=(1,-1).
Row sums are the Motzkin numbers (A001006). Column 0 gives A004148.
LINKS
FORMULA
G.f. G=G(t, z) satisfies z^2*(t+z-tz)G^2-(1-z-z^2+tz^2)*G+1=0.
EXAMPLE
Triangle starts:
1;
1;
2;
4;
8, 1;
17, 4;
37, 13, 1;
...
Row n (n>=2) has floor(n/2) terms.
T(5,1)=4 counts HU(DU)D, U(DU)DH, U(DU)HD and UH(DU)D (here U=(1,1), H=(1,0) and D=(1,-1); valleys are shown between parentheses).
MAPLE
eq:=G=1+z*G+z^2*G*(t*(G-1-z*G)+1+z*G): sol:=solve(eq, G): Gser:=simplify(series(sol[1], z=0, 15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser, z^n)) od: 1, 1, seq(seq(coeff(t*P[n], t^k), k=1..floor(n/2)), n=0..12);
# second Maple program:
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y, 1)+b(x-1, y-1, z)+
expand(b(x-1, y+1, 1)*t)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Oct 23 2019
MATHEMATICA
(CoefficientList[#, t]& ) /@ CoefficientList[(-(t z^2) + Sqrt[((t-1) z^2 - z + 1)^2 + 4 z^2 (z t - z - t)] + z^2 + z - 1)/(2 z^2 (z t - z - t)) + O[z]^16, z] // Flatten (* Jean-François Alcover, Oct 23 2019 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 02 2004
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007
STATUS
approved