

A197266


Decimal expansion of least x>0 having sin(3x) = (sin 8x)^2.


2



0, 4, 9, 1, 9, 2, 7, 4, 8, 3, 1, 7, 9, 5, 6, 8, 9, 6, 8, 0, 3, 0, 4, 0, 8, 0, 3, 0, 7, 2, 9, 1, 7, 8, 9, 5, 9, 7, 0, 7, 7, 0, 4, 8, 5, 9, 6, 1, 8, 0, 0, 1, 0, 9, 6, 1, 5, 4, 9, 5, 1, 1, 3, 4, 1, 2, 4, 1, 2, 9, 4, 7, 6, 4, 9, 7, 8, 0, 8, 0, 8, 6, 2, 4, 2, 6, 1, 2, 1, 6, 2, 8, 5, 8, 0, 8, 1, 1, 0, 9, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=0..100.


EXAMPLE

x = 0.04919274831795689680304080307291789597077...


MATHEMATICA

b = 3; c = 8; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .03, .1}, WorkingPrecision > 100]
RealDigits[t] (* A197266 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 0.6}]


CROSSREFS

Cf. A197133.
Sequence in context: A295709 A316295 A199788 * A200393 A070438 A070638
Adjacent sequences: A197263 A197264 A197265 * A197267 A197268 A197269


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 12 2011


STATUS

approved



