

A197259


Decimal expansion of least x>0 having sin(2x)=(sin 8x)^2.


2



3, 1, 9, 1, 6, 3, 6, 5, 2, 5, 3, 9, 0, 2, 1, 0, 8, 8, 3, 1, 1, 8, 1, 7, 3, 2, 2, 3, 0, 1, 5, 1, 6, 7, 1, 3, 0, 5, 9, 0, 8, 5, 5, 6, 0, 6, 7, 2, 2, 3, 0, 1, 5, 0, 2, 7, 0, 8, 6, 9, 1, 3, 1, 3, 2, 9, 5, 4, 8, 0, 5, 7, 1, 3, 6, 7, 6, 2, 4, 6, 4, 5, 7, 0, 4, 1, 5, 0, 2, 1, 1, 0, 2, 4, 0, 2, 2, 4, 2, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=0..99.


EXAMPLE

x=0.0319163652539021088311817322301516...


MATHEMATICA

b = 2; c = 8; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .02, .04}, WorkingPrecision > 100]
RealDigits[t] (* A197259*)
Plot[{f[b*x], f[c*x]^2}, {x, 0, .04}]


CROSSREFS

Cf. A197133.
Sequence in context: A280192 A325375 A317202 * A200006 A070894 A090261
Adjacent sequences: A197256 A197257 A197258 * A197260 A197261 A197262


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 12 2011


STATUS

approved



