login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197189 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=2. 9
1, 2, 11, 43, 184, 767, 3221, 13498, 56599, 237287, 994856, 4171003, 17487289, 73316882, 307387091, 1288745683, 5403172504, 22653245927, 94975600301, 398193030538, 1669457093119, 6999336432047, 29345294761736, 123032566445443, 515824173145009, 2162635351662242 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,5).

FORMULA

G.f.: (1-x)/(1-3*x-5*x^2).

a(n) = ((29+sqrt(29))*(3+sqrt(29))^n+(29-sqrt(29))*(3-sqrt(29))^n)/(58*2^n).

a(n) = A015523(n+1)-A015523(n).

G.f.: G(0)*(1-x)/(2-3*x), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013

MATHEMATICA

a = {1, 2}; Do[AppendTo[a, 3 a[[-1]] + 5 a[[-2]]], {24}]; a (* Bruno Berselli, Dec 26 2012 *)

PROG

(PARI) v=vector(26); v[1]=1; v[2]=2; for(i=3, #v, v[i]=3*v[i-1]+5*v[i-2]); v

(MAGMA) [n le 2 select n else 3*Self(n-1)+5*Self(n-2): n in [1..26]];

CROSSREFS

Cf. for type of recurrence: A015523, A072263, A072264, A152187, A179606 and also A180140.

Sequence in context: A027247 A141190 A048500 * A050620 A027253 A241712

Adjacent sequences:  A197186 A197187 A197188 * A197190 A197191 A197192

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Oct 11 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:32 EST 2019. Contains 329862 sequences. (Running on oeis4.)