login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072264
a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=1.
8
1, 1, 8, 29, 127, 526, 2213, 9269, 38872, 162961, 683243, 2864534, 12009817, 50352121, 211105448, 885076949, 3710758087, 15557659006, 65226767453, 273468597389, 1146539629432, 4806961875241, 20153583772883, 84495560694854, 354254600948977, 1485241606321201
OFFSET
0,3
FORMULA
G.f.: (1-2*x)/(1-3*x-5*x^2). - Jaume Oliver Lafont, Mar 06 2009
G.f.: G(0)*(1-2*x)/(2-3*x), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = 5^((n-1)/2)*( sqrt(5)*Fibonacci(n+1, 3/sqrt(5)) - 2*Fibonacci(n, 3/sqrt(5)) ). - G. C. Greubel, Jan 14 2020
EXAMPLE
a(5)=3*a(4)+5*a(3): 127=3*29+5*8=87+40.
MAPLE
seq(coeff(series((1-2*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 14 2020
MATHEMATICA
LinearRecurrence[{3, 5}, {1, 1}, 30] (* Harvey P. Dale, Feb 17 2018 *)
PROG
(Magma) [n le 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..26]]; // Bruno Berselli, Oct 11 2011
(PARI) my(x='x+O('x^30)); Vec((1-2*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
(Sage)
def A072264_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-2*x)/(1-3*x-5*x^2) ).list()
A072264_list(30) # G. C. Greubel, Jan 14 2020
(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Miklos Kristof, Jul 08 2002
EXTENSIONS
Offset changed and more terms added by Bruno Berselli, Oct 11 2011
STATUS
approved