

A197187


The Riemann primes of the psi type and index 3.


5



2, 3, 5, 7, 11, 13, 17, 29, 59, 67, 97, 103, 149, 151, 233, 251, 277, 311, 313, 479, 643, 719, 919, 967, 1039, 1373, 1489, 1553, 1847, 1973, 1979, 2663, 2953, 3323, 3677, 3691, 4651, 4663, 4789
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The sequence consists of the prime numbers p that are champions (left to right maxima) of the function psi(p^3)p^3, where psi(p) is the Chebyshev psi function.


LINKS

Table of n, a(n) for n=1..39.
M. Planat and P. Solé, Efficient prime counting and the Chebyshev primes, arXiv:1109.6489 [math.NT], 2011.


MATHEMATICA

ChebyshevPsi[n_] := Range[n] // MangoldtLambda // Total;
Reap[For[max=0; p=2, p < 1000, p = NextPrime[p], f = Abs[ChebyshevPsi[p^3]  p^3]; If[f > max, max = f; Print[p]; Sow[p]]]][[2, 1]] (* JeanFrançois Alcover, Dec 03 2018 *)


PROG

(Perl) use ntheory ":all"; my($max, $f)=(0); forprimes { $f=abs(chebyshev_psi($_**3)$_**3); if ($f > $max) { say; $max=$f; } } 1000; # Dana Jacobsen, Dec 28 2015


CROSSREFS

Cf. A196669, A197185, A197186, A197188.
Sequence in context: A249644 A103144 A105909 * A086498 A211655 A055387
Adjacent sequences: A197184 A197185 A197186 * A197188 A197189 A197190


KEYWORD

nonn,more


AUTHOR

Michel Planat, Oct 11 2011


EXTENSIONS

More terms from Dana Jacobsen, Dec 28 2015


STATUS

approved



