The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196614 Decimal expansion of the least x>0 satisfying 4*sec(x)=x. 5
 5, 5, 2, 2, 4, 3, 4, 1, 0, 2, 5, 9, 1, 0, 2, 6, 9, 1, 6, 5, 1, 2, 7, 9, 3, 4, 7, 7, 1, 8, 0, 2, 2, 6, 4, 6, 1, 8, 3, 5, 3, 4, 4, 1, 0, 2, 2, 5, 1, 4, 9, 7, 9, 9, 3, 3, 7, 2, 2, 7, 1, 2, 5, 1, 6, 3, 5, 2, 4, 7, 7, 6, 4, 8, 3, 6, 4, 6, 0, 7, 0, 4, 5, 2, 7, 3, 5, 1, 7, 5, 4, 1, 6, 2, 1, 1, 0, 1, 9, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE x=5.5224341025910269165127934771802264618... MATHEMATICA Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t]  (* A133868 *) t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t]  (* A196612 *) t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t]  (* A196613 *) t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t]  (* A196614 *) t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t]    (* A196615 *) t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t]   (* A196616 *) CROSSREFS Sequence in context: A229160 A011501 A319305 * A319905 A319593 A335321 Adjacent sequences:  A196611 A196612 A196613 * A196615 A196616 A196617 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 10:11 EDT 2021. Contains 346447 sequences. (Running on oeis4.)