login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196613
Decimal expansion of the least x>0 satisfying 3*sec(x)=x.
5
5, 3, 1, 2, 4, 6, 9, 7, 1, 1, 6, 5, 6, 5, 6, 7, 6, 9, 7, 3, 6, 6, 1, 5, 7, 9, 9, 8, 2, 5, 4, 4, 0, 3, 1, 8, 1, 1, 9, 1, 6, 9, 4, 1, 2, 2, 9, 2, 0, 7, 8, 3, 5, 5, 2, 4, 1, 2, 5, 6, 2, 2, 8, 3, 8, 4, 9, 0, 6, 5, 4, 7, 0, 5, 4, 7, 0, 2, 9, 2, 3, 6, 4, 4, 2, 8, 8, 2, 9, 8, 4, 8, 7, 2, 6, 5, 3, 2, 5, 2, 9
OFFSET
1,1
EXAMPLE
x=5.31246971165656769736615799825440318119169412292...
MATHEMATICA
Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A133868 *)
t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196612 *)
t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196613 *)
t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196614 *)
t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196615 *)
t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196616 *)
CROSSREFS
Sequence in context: A232810 A063268 A179613 * A151903 A160276 A279903
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 05 2011
STATUS
approved