login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196535
Decimal expansion of sum_{j=0..infinity} exp(-Pi*(2j+1)^2).
0
0, 4, 3, 2, 1, 3, 9, 1, 8, 2, 6, 4, 2, 9, 7, 7, 9, 8, 2, 9, 2, 0, 1, 8, 3, 8, 2, 0, 2, 7, 2, 5, 0, 3, 4, 1, 8, 4, 2, 0, 6, 0, 4, 4, 7, 7, 1, 2, 9, 3, 7, 4, 6, 3, 1, 2, 5, 2, 7, 3, 4, 4, 6, 1, 7, 8, 9, 8, 7, 1, 8, 0, 7, 2, 3, 7, 7, 5, 1, 7, 0, 4, 9, 9, 3, 1, 8, 1, 5, 8, 7, 8, 2, 5, 2, 4, 9, 0, 6, 2, 8, 4, 7, 1, 6, 0
OFFSET
0,2
REFERENCES
Jolley, Summation of Series, Dover (1961) eq (114) on page 22.
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 729, formula 14.
FORMULA
Equals (2^(1/4)-1) * Gamma(1/4) / ( 2^(11/4) * Pi^(3/4) ).
EXAMPLE
0.04321391826429779829201838202725...
MAPLE
(root[4](2)-1)*GAMMA(1/4)/2^(11/4)/Pi^(3/4) ; evalf(%) ;
MATHEMATICA
RealDigits[ EllipticTheta[2, 0, Exp[-4*Pi]]/2, 10, 105] // First // Prepend[#, 0]& (* Jean-François Alcover, Feb 12 2013 *)
CROSSREFS
KEYWORD
nonn,less,cons,easy
AUTHOR
R. J. Mathar, Oct 03 2011
EXTENSIONS
12 more digits from Jean-François Alcover, Feb 12 2013
STATUS
approved