login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of sum_{j=0..infinity} exp(-Pi*(2j+1)^2).
0

%I #14 Jun 08 2020 10:24:39

%S 0,4,3,2,1,3,9,1,8,2,6,4,2,9,7,7,9,8,2,9,2,0,1,8,3,8,2,0,2,7,2,5,0,3,

%T 4,1,8,4,2,0,6,0,4,4,7,7,1,2,9,3,7,4,6,3,1,2,5,2,7,3,4,4,6,1,7,8,9,8,

%U 7,1,8,0,7,2,3,7,7,5,1,7,0,4,9,9,3,1,8,1,5,8,7,8,2,5,2,4,9,0,6,2,8,4,7,1,6,0

%N Decimal expansion of sum_{j=0..infinity} exp(-Pi*(2j+1)^2).

%D Jolley, Summation of Series, Dover (1961) eq (114) on page 22.

%D A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 729, formula 14.

%F Equals (2^(1/4)-1) * Gamma(1/4) / ( 2^(11/4) * Pi^(3/4) ).

%e 0.04321391826429779829201838202725...

%p (root[4](2)-1)*GAMMA(1/4)/2^(11/4)/Pi^(3/4) ; evalf(%) ;

%t RealDigits[ EllipticTheta[2, 0, Exp[-4*Pi]]/2, 10, 105] // First // Prepend[#, 0]& (* _Jean-François Alcover_, Feb 12 2013 *)

%Y Cf. A093580, A068466, A010767.

%K nonn,less,cons,easy

%O 0,2

%A _R. J. Mathar_, Oct 03 2011

%E 12 more digits from _Jean-François Alcover_, Feb 12 2013