login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196500 Decimal expansion of the greatest x satisfying x=1/x+cot(1/x). 6
3, 6, 4, 4, 7, 0, 3, 6, 8, 5, 9, 1, 0, 4, 0, 5, 3, 8, 0, 0, 4, 4, 0, 0, 2, 1, 4, 6, 3, 7, 8, 1, 6, 0, 8, 4, 9, 1, 2, 4, 1, 0, 3, 6, 4, 1, 3, 0, 3, 0, 2, 5, 8, 1, 7, 2, 1, 0, 1, 5, 4, 1, 0, 7, 7, 8, 0, 5, 3, 6, 0, 0, 5, 4, 7, 1, 6, 8, 2, 3, 2, 2, 3, 8, 5, 7, 5, 3, 1, 0, 4, 5, 2, 4, 5, 1, 7, 2, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Let B be the greatest x satisfying x=1/x+cot(1/x), so that B=0.364...  Then

...

cot(1/x) < x < 1/x+cot(1/x) for all x > B; equivalently,

...

cot(x) < 1/x < x+cot(x) for 0 < x < 1/B = 2.7437....

...

These inequalities and those at A196503 supplement the trigonometric inequalities given in Bullen's dictionary cited below.

REFERENCES

P. S. Bullen, A Dictionary of Inequalities, Longman, 1998, pages 250-251.

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

B=0.364470368591040538004400214637816084912410...

1/B=2.7437072699922693825611220811203071372042...

MATHEMATICA

Plot[{Cot[1/x], x, 1/x + Cot[1/x]}, {x, 0.34, 1.0}]

t = x /.FindRoot[1/x + Cot[1/x] == x, {x, .3, .4}, WorkingPrecision -> 100]

RealDigits[t] (* A196500 *)

1/t

RealDigits[%] (* A196501 *)

CROSSREFS

Cf. A196501, A196502, A196504.

Sequence in context: A006464 A233825 A159354 * A023676 A155530 A249032

Adjacent sequences:  A196497 A196498 A196499 * A196501 A196502 A196503

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 09:12 EDT 2017. Contains 285508 sequences.