|
|
A196192
|
|
G.f. satisfies A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)^2).
|
|
5
|
|
|
1, 1, 4, 16, 77, 389, 2128, 12019, 70185, 418788, 2544938, 15687842, 97871618, 616729500, 3919686231, 25096525793, 161723865118, 1048085548563, 6826585371618, 44664343473618, 293407529533947, 1934484748893113, 12796683165889635, 84906535878961845
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
EXAMPLE
|
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 77*x^4 + 389*x^5 + 2128*x^6 +...
where
A(x) = 1/((1 - x*A(x)^2) * (1 - x^2*A(x^2)^2) * (1 - x^3*A(x^3)^2) *...).
|
|
PROG
|
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*subst(A, x, x^k+x*O(x^n))^2))); polcoeff(A, n)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|