The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196194 E.g.f.: 1 + Sum_{n>=1} x^n * Product_{k=1..n} (exp(k*x)-1)/(exp(x)-1). 2
 1, 1, 4, 42, 804, 24200, 1052310, 62399232, 4838470280, 475205921136, 57651242228010, 8466308935131080, 1480085055633108012, 303741049766220682200, 72304996099042631680574, 19761618044081811015046320, 6145897155031392768635838480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..160 Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019. FORMULA a(n) ~ 12^(n+1) * n^(2*n+1) / (exp(2*n) * Pi^(2*n+1)). - Vaclav Kotesovec, Nov 04 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 42*x^3/3! + 804*x^4/4! + 24200*x^5/5! + ... where A(x) = 1 + x*(exp(x)-1)/(exp(x)-1) + x^2*(exp(x)-1)*(exp(2*x)-1)/(exp(x)-1)^2 + x^3*(exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)/(exp(x)-1)^3 + ... Equivalently, A(x) = 1 + x + x^2*(exp(x)+1) + x^3*(exp(x)+1)*(exp(2*x)+exp(x)+1) + x^4*(exp(x)+1)*(exp(2*x)+exp(x)+1)*(exp(3*x)+exp(2*x)+exp(x)+1) + ... PROG (PARI) {a(n)=n!*polcoeff(1+sum(m=1, n, x^m*prod(k=1, m, (exp(k*x+x*O(x^n))-1)/(exp(x+x*O(x^n))-1))), n)} CROSSREFS Cf. A196193. Sequence in context: A268567 A197866 A197948 * A197323 A197976 A338194 Adjacent sequences: A196191 A196192 A196193 * A196195 A196196 A196197 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 11:53 EDT 2024. Contains 374394 sequences. (Running on oeis4.)