OFFSET
1,1
COMMENTS
A semiprime can be repdigit (base 10) in only three ways. It can be a single-digit semiprime, a repunit semiprime (A102782), or a repunit prime times a prime digit {2, 3, 5, 7}. Occurs in proof that the sequence is infinite in which a(n) is the least semiprime > a(n-1) such that a(n) has no digit in common with a(n-1). - Jonathan Vos Post; corrected by Max Alekseyev, Sep 14 2022
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..35
FORMULA
Union of {4, 6, 9}, A102782, 2*A004022, 3*A004022, 5*A004022, and 7*A004022. - Jonathan Vos Post and R. J. Mathar, Oct 27 2011
EXAMPLE
a(12) = 11111111111 = 21649 * 513239 is semiprime.
MAPLE
with(numtheory):for n from 1 to 23 do:for b from 1 to 9 do:x:=(((10^n)- 1)/9)*b:if bigomega(x)=2 then printf(`%d, `, x):else fi:od:od:
MATHEMATICA
Select[FromDigits/@Flatten[Table[PadRight[{}, i, n], {i, 25}, {n, 9}], 1], PrimeOmega[ #] ==2&] (* Harvey P. Dale, Mar 11 2019 *)
PROG
(PARI) print1("4, 6, 9"); for(n=1, 20, t=10^n\9; if(bigomega(t)==2, print1(", "t)); if(isprime(t), forprime(p=2, 7, print1(", "p*t)))) \\ Charles R Greathouse IV, Oct 27 2011
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Oct 27 2011
EXTENSIONS
Edited by Max Alekseyev, Sep 14 2022
STATUS
approved