login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196058
Diameter (i.e., largest distance between two vertices) of the rooted tree with Matula-Goebel number n.
2
0, 1, 2, 2, 3, 3, 2, 2, 4, 4, 4, 3, 3, 3, 5, 2, 3, 4, 2, 4, 4, 5, 4, 3, 6, 4, 4, 3, 4, 5, 5, 2, 6, 4, 5, 4, 3, 3, 5, 4, 4, 4, 3, 5, 5, 4, 5, 3, 4, 6, 5, 4, 2, 4, 7, 3, 4, 5, 4, 5, 4, 6, 4, 2, 6, 6, 3, 4, 5, 5, 4, 4, 4, 4, 6, 3, 6, 5, 5, 4, 4, 5, 4, 4, 6, 4, 6, 5, 3, 5, 5, 4, 7, 5, 5, 3, 6, 4, 6, 6, 4, 5, 4, 4, 5, 3, 3, 4, 5, 7, 5, 3, 5, 4, 6, 5, 5, 5, 5, 5
OFFSET
1,3
COMMENTS
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
LINKS
Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
F. Göbel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
a(1)=0; if n=prime(t), then a(n)=max(a(t), 1+H(t)); if n=r*s (r,s,>=2), then a(n)=max(a(r), a(s), H(r)+H(s)), where H(m) is the height of the tree with Matula-Goebel number m (see A109082). The Maple program is based on this recursive formula.
The Gutman et al. references contain a different recursive formula.
a(n^k) = 2*A109082(n) for k > 1. - François Marques, Mar 13 2021
EXAMPLE
a(2^m) = 2 because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
MAPLE
with(numtheory): a := proc (n) local r, s, H: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: H := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+H(pi(n)) else max(H(r(n)), H(s(n))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then max(a(pi(n)), 1+H(pi(n))) else max(a(r(n)), a(s(n)), H(r(n))+H(s(n))) end if end proc: seq(a(n), n = 1 .. 120);
MATHEMATICA
r[n_] := r[n] = FactorInteger[n][[1, 1]];
s[n_] := s[n] = n/r[n];
H[n_] := H[n] = Which[n == 1, 0, PrimeOmega[n] == 1, 1 + H[PrimePi[n]], True, Max[H[r[n]], H[s[n]]]];
a[n_] := a[n] = Which[n == 1, 0, PrimeOmega[n] == 1, Max[a[PrimePi[n]], 1 + H[PrimePi[n]]], True, Max[a[r[n]], a[s[n]], H[r[n]] + H[s[n]]]];
Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Nov 13 2017, after Emeric Deutsch *)
PROG
(PARI) HD(n) = { if(n==1, return([0, 0]),
my(f=factor(n)~, h=0, d=0, hd);
foreach(f, p,
hd=HD(primepi(p[1]));
hd[1]++;
d=max(max(d, if(p[2]>1, 2*hd[1], hd[2])), h+hd[1]);
h=max(h, hd[1])
);
return([h, d])
)
};
A196058(n)=HD(n)[2]; \\ François Marques, Mar 13 2021
CROSSREFS
Cf. A109082.
Sequence in context: A332249 A049113 A055093 * A081844 A233549 A334475
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 30 2011
STATUS
approved