login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195662
Triangle T(n,k) read by rows: T(0,0)= -3, T(1,0)= 2, T(1,1) = 0 and T(n,k) = T(n-1,k) -T(n-2,k-2) otherwise.
1
-3, 2, 0, 2, 0, 3, 2, 0, 1, 0, 2, 0, -1, 0, -3, 2, 0, -3, 0, -4, 0, 2, 0, -5, 0, -3, 0, 3, 2, 0, -7, 0, 0, 0, 7, 0, 2, 0, -9, 0, 5, 0, 10, 0, -3, 2, 0, -11, 0, 12, 0, 10, 0, -10, 0, 2, 0, -13, 0, 21, 0, 5, 0, -20, 0, 3, 2, 0, -15, 0, 32, 0, -7, 0, -30, 0, 13, 0
OFFSET
0,1
COMMENTS
In the notation of A195673, this defines polynomials P(n,x,p=-3,q=2), where p and q are the values of the constant and linear order for n=0 and 1.
Row sums -- the value P(n,1,-3,2) of the polynomial -- are A130848(n+5).
For general seed values in the two top rows of the triangle, the recurrence T(n,k) = T(n-1,k) - T(n-2,k-2) defines the triangle
p;
q, 0;
q, 0, -p;
q, 0, -p-q, 0;
q, 0, -p-2q, 0, p;
q, 0, -p-3q, 0, 2p+q, 0;
and a companion triangle by adding 1 to both seed values:
p+1;
q+1, 0;
q+1, 0, -p-1;
q+1, 0, -p-q-2, 0;
q+1, 0, -p-2q-3, 0, p+1;
q+1, 0, -p-3q-4, 0, 2p+q+3, 0;
The point-by-point difference between two companions is P(n,x,p+1,q+1) - P(n,x,p,q) = S(n,x) as represented (with increasing exponents) by A053119.
Examples of such triangles are A053119 (p=q=1), A192575 (p=1, q=2),
A162514 (p=2, q=1, up to a sign factor), A192011 (p=-1, q=2), A135929 (p=-2, q=1, apart from a irregular leading T(0,0)).
FORMULA
T(n,0) = 2 (n>0).
T(n,2) = -A060747(n-3), n>2.
T(n,4) = A028347(n-5), n>6.
T(2n,2n) = -3*(-1)^n ; T(n, 2k-1) = 0 ; T(2n+1,2n) = -(3n-2)*(-1)^n. - M. F. Hasler, Sep 28 2011
EXAMPLE
The first few rows are
-3;
2, 0;
2, 0, 3;
2, 0, 1, 0;
2, 0, -1, 0, -3;
2, 0, -3, 0, -4, 0;
2, 0, -5, 0, -3, 0, 3;
2, 0, -7, 0, 0, 0, 7, 0;
2, 0, -9, 0, 5, 0, 10, 0, -3;
2, 0, -11, 0, 12, 0, 10, 0, -10, 0;
2, 0, -13, 0, 21, 0, 5, 0, -20, 0, 3;
MATHEMATICA
p = -3; q = 2; t[0, 0] = p; t[_, 0] = q; t[_, _?OddQ] = 0; t[n_, k_] /; k > n = 0; t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = t[n-1, k] - t[n-2, k-2]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 27 2012 *)
CROSSREFS
Sequence in context: A212220 A193233 A145878 * A340860 A112606 A108512
KEYWORD
sign,tabl,easy
AUTHOR
Paul Curtz, Sep 22 2011
STATUS
approved