login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195538
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(8).
4
5, 12, 145, 420, 4901, 14280, 166465, 485112, 5654885, 16479540, 192099601, 559819260, 6525731525, 19017375312, 221682772225, 646030941360, 7530688524101, 21946034630940, 255821727047185, 745519146510612, 8690408031080165
OFFSET
1,1
COMMENTS
See A195500 for a discussion and references.
Conjecture: a(n) = 35*a(n-2) - 35*a(n-4) + a(n-6) with bisections A098602 and A076218. - R. J. Mathar, Sep 21 2011
MATHEMATICA
r = Sqrt[8]; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195538, A195539 *)
Sqrt[a^2 + b^2] (* A195540 *)
(* Peter J. C. Moses, Sep 02 2011 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Clark Kimberling, Sep 20 2011
STATUS
approved