login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195466 Denominator of the coefficient of x^(2n) in expansion of 1/x^4 - 1/(3*x^2) - 1/(x^3*arctanh(x)). 3
45, 945, 14175, 467775, 638512875, 1915538625, 488462349375, 7795859096025, 32157918771103125, 316985199315159375, 3028793579456347828125, 478230565177318078125, 3952575621190533915703125, 28304394023345413370350078125, 7217620475953080409439269921875, 21652861427859241228317809765625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Prepending 3 to the data gives the denominators of the odd powers in the expansion of 1/arctan(x). - Peter Luschny, Oct 04 2014

LINKS

Table of n, a(n) for n=0..15.

FORMULA

1/x^4 - 1/(3x^2) - 1/(x^3*arctanh x) = 4/45 + 44*x^2/945 + 428*x^4/14175 + 10196*x^6/467775 + ...

MAPLE

A195466 := proc(n)

        1/x^4 -1/(3*x^2) -1/(x^3*arctanh(x)) ;

        coeftayl(%, x=0, 2*n) ;

        denom(%) ;

end proc

seq(A195466(n), n=0..15) ;

# Or

seq(denom(coeff(series(1/arctan(x), x, 2*n+2), x, 2*n+1)), n=1..16); # Peter Luschny, Oct 04 2014

MATHEMATICA

a[n_] := Sum[(2^(j+1)*Binomial[2*n+3, j]*Sum[(k!*StirlingS1[j+k, j]*StirlingS2[j+1, k])/(j+k)!, {k, 0, j+1}])/(j+1), {j, 0, 2*n+3}]/(2*n+3); Table[a[n] // Denominator, {n, 0, 15}] (* Jean-François Alcover, Jul 03 2013, after Vladimir Kruchinin's formula in A216272 *)

CROSSREFS

Cf. A187870 (numerator).

Sequence in context: A078761 A034967 A199352 * A010961 A271795 A161690

Adjacent sequences:  A195463 A195464 A195465 * A195467 A195468 A195469

KEYWORD

nonn,frac

AUTHOR

R. J. Mathar, Sep 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 08:57 EST 2021. Contains 349484 sequences. (Running on oeis4.)