login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195414
Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
5
6, 4, 9, 5, 1, 6, 0, 5, 0, 2, 9, 2, 0, 9, 4, 5, 3, 2, 4, 4, 9, 9, 3, 9, 5, 2, 6, 3, 7, 4, 2, 5, 2, 4, 7, 5, 8, 1, 4, 1, 8, 7, 5, 7, 5, 9, 9, 5, 3, 5, 1, 0, 7, 5, 6, 6, 3, 8, 3, 8, 5, 2, 2, 9, 2, 8, 8, 4, 5, 4, 9, 7, 1, 6, 2, 6, 9, 8, 8, 7, 3, 3, 6, 7, 7, 6, 6, 2, 9, 4, 8, 0, 8, 7, 6, 3, 4, 5, 0, 6
OFFSET
1,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(C)=6.49516050292094532449939526374252475814...
MATHEMATICA
a = 5; b = 12; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195412 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195413 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195414 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195424 *)
CROSSREFS
Cf. A195304.
Sequence in context: A021158 A231535 A019931 * A333322 A348896 A153630
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 18 2011
STATUS
approved