login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195415
E.g.f.: Sum_{n>=1} tanh(n*x)^n = Sum_{n>=1} a(n)*4^(n-1)*x^n/n!.
7
1, 2, 10, 92, 1351, 28982, 855100, 33214232, 1642999501, 100843185962, 7520379392890, 669760178257172, 70211429619908851, 8558006664633638942, 1200128210993564085880, 191861070874818576596912, 34685967730611200643509401, 7041037426518318365605795922
OFFSET
1,2
COMMENTS
Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 2, 3, 1, 0, 2, 1, 2, 3, 1, 0, 2, 1, 2, 3, 1, 0, 2, ...], with an apparent period of 6. - Peter Bala, May 29 2022
LINKS
FORMULA
E.g.f.: Sum_{n>=1} ( 1 - 2/(1+exp(2*n*x)) )^n = Sum_{n>=1} a(n)*4^(n-1)/n!.
a(n) ~ c * d^n * n^(2*n + 1/2), where d = 1 / (2 * exp(2) * log(1+sqrt(2))^2) = 0.0871085887239583895519632137900851584739951067757899616766024190... and c = 13.10490857177911562030370300610447966745088413236135355214718... - Vaclav Kotesovec, May 31 2022
a(n) = A221077(n) / 4^(n-1). - Vaclav Kotesovec, Jun 02 2022
EXAMPLE
E.g.f.: A(x) = x + 8*x^2/2! + 160*x^3/3! + 5888*x^4/4! + 345856*x^5/5! +...
or, equivalently,
A(x) = x + 2*4*x^2/2! + 10*4^2*x^3/3! + 92*4^3*x^4/4! + 1351*4^4*x^5/5! +...
where
A(x) = tanh(x) + tanh(2*x)^2 + tanh(3*x)^3 + tanh(4*x)^4 + tanh(5*x)^5 +...
MAPLE
seq(coeff(n!/4^(n-1)*series(add(tanh(n*x)^n, n = 1..100), x, 101), x, n), n = 1..100); # Peter Bala, May 29 2022
MATHEMATICA
nmax = 20; Rest[CoefficientList[Series[Sum[Tanh[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! / 4^(Range[0, nmax] - 1)] (* Vaclav Kotesovec, May 31 2022 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=1, n, tanh(m*X)^m); n!/4^(n-1)*polcoeff(Egf, n)}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2011
STATUS
approved