login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195238 Numbers with at least 2 and not more than 3 distinct prime factors not greater than 7 that are multiples of 7 or of 15. 3
14, 15, 21, 28, 30, 35, 42, 45, 56, 60, 63, 70, 75, 84, 90, 98, 105, 112, 120, 126, 135, 140, 147, 150, 168, 175, 180, 189, 196, 224, 225, 240, 245, 252, 270, 280, 294, 300, 315, 336, 350, 360, 375, 378, 392, 405, 441, 448, 450, 480, 490, 504, 525, 540, 560 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

2 <= A001221(a(n)) <= 3; 5 <= A006530(a(n)) <= 7;

A143204 is a subsequence; subsequence of A002473.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

EXAMPLE

a(10) = 60 = 2^2 * 3 * 5;

a(11) = 63 = 3^2 * 7;

a(12) = 70 = 2 * 5 * 7.

MATHEMATICA

pfsQ[n_]:=Module[{fs=Transpose[FactorInteger[n]][[1]]}, Max[fs]<8 && 1<Length[fs]<4]; upto=3000; With[{max7=Floor[upto/7], max15= Floor[ upto/15]}, Union[Select[Join[7Range[max7], 15Range[max15]], pfsQ]]] (* Harvey P. Dale, Aug 21 2011 *)

PROG

(Haskell)

a195238 n = a195238_list !! (n-1)

a195238_list = filter (\x -> a001221 x `elem` [2, 3] &&

a006530 x `elem` [5, 7] &&

(mod x 7 == 0 || mod x 15 == 0)) [1..]

-- Reinhard Zumkeller, Sep 13 2011

(PARI) is(n)=my(v=apply(p->valuation(n, p), [2, 3, 5, 7])); n==2^v[1]*3^v[2]*5^v[3]*7^v[4] && (v[4] || v[2]*v[3]) && factorback(v)==0 && !!v[1]+!!v[2]+!!v[3]+!!v[4]>1 \\ Charles R Greathouse IV, Sep 14 2015

CROSSREFS

Cf. A001221, A006530, A143204, A002473.

Sequence in context: A346549 A075658 A047821 * A085816 A090066 A084429

Adjacent sequences: A195235 A195236 A195237 * A195239 A195240 A195241

KEYWORD

nonn

AUTHOR

Harvey P. Dale, Sep 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 31 11:22 EST 2023. Contains 359971 sequences. (Running on oeis4.)