login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194976 Fractalization of (1+[n/sqrt(2)]), where [ ]=floor. 4
1, 1, 2, 1, 2, 3, 1, 2, 4, 3, 1, 2, 4, 5, 3, 1, 2, 4, 5, 6, 3, 1, 2, 4, 5, 7, 6, 3, 1, 2, 4, 5, 7, 8, 6, 3, 1, 2, 4, 5, 7, 8, 9, 6, 3, 1, 2, 4, 5, 7, 8, 9, 10, 6, 3, 1, 2, 4, 5, 7, 8, 9, 11, 10, 6, 3, 1, 2, 4, 5, 7, 8, 9, 11, 12, 10, 6, 3, 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 10, 6, 3, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (1+[n/sqrt(2)]) is A049474.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..11325

MATHEMATICA

r = Sqrt[2]; p[n_] := 1 + Floor[n/r]

Table[p[n], {n, 1, 90}]  (* A049474 *)

g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]

f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]

f[20] (* A194976 *)

row[n_] := Position[f[30], n];

u = TableForm[Table[row[n], {n, 1, 5}]]

v[n_, k_] := Part[row[n], k];

w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},

{k, 1, n}]] (* A194977 *)

q[n_] := Position[w, n]; Flatten[Table[q[n],

{n, 1, 80}]] (* A194978 *)

CROSSREFS

Cf. A194959, A049474, A194977, A194978.

Sequence in context: A334430 A214614 A265692 * A195082 A210535 A194983

Adjacent sequences:  A194973 A194974 A194975 * A194977 A194978 A194979

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 14:44 EDT 2021. Contains 347586 sequences. (Running on oeis4.)