login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194973 Fractalization of (A053737(n+4)), n>=0. 3
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 5, 2, 3, 4, 1, 5, 6, 2, 3, 4, 1, 5, 6, 7, 2, 3, 4, 1, 5, 6, 7, 8, 2, 3, 4, 1, 5, 9, 6, 7, 8, 2, 3, 4, 1, 5, 9, 10, 6, 7, 8, 2, 3, 4, 1, 5, 9, 10, 11, 6, 7, 8, 2, 3, 4, 1, 5, 9, 10, 11, 12, 6, 7, 8, 2, 3, 4, 1, 5, 9, 13, 10, 11, 12, 6, 7, 8, 2, 3, 4, 1, 5, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (A053737(n+4)), n>=0 is formed by concatenating 4-tuples of the form (n,n+1,n+2, n+3) for n>=1:  1,2,3,4,2,3,4,5,3,4,5,6,...

LINKS

Table of n, a(n) for n=1..94.

MATHEMATICA

p[n_] := Floor[(n + 3)/4] + Mod[n - 1, 4]

Table[p[n], {n, 1, 90}]  (* A053737(n+4), n>=0 *)

g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]

f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]

f[20]  (* A194973 *)

row[n_] := Position[f[30], n];

u = TableForm[Table[row[n], {n, 1, 5}]]

v[n_, k_] := Part[row[n], k];

w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},

{k, 1, n}]]  (* A194974 *)

q[n_] := Position[w, n]; Flatten[Table[q[n],

{n, 1, 80}]]  (* A194975 *)

CROSSREFS

Cf. A194959, A194974, A194975.

Sequence in context: A051237 A064379 A278961 * A195113 A120418 A120853

Adjacent sequences:  A194970 A194971 A194972 * A194974 A194975 A194976

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 19:15 EDT 2021. Contains 343829 sequences. (Running on oeis4.)