login
A194671
Number of k in [1,n] for which <n*r>+<k*r> > 1, where < > = fractional part and r = sqrt(5); row sums of A164670.
4
0, 0, 2, 4, 1, 2, 5, 8, 2, 4, 7, 11, 1, 4, 8, 13, 0, 4, 8, 14, 20, 4, 9, 16, 23, 4, 10, 17, 25, 2, 9, 17, 26, 0, 8, 16, 26, 36, 7, 16, 27, 38, 6, 16, 28, 40, 4, 15, 27, 40, 1, 13, 26, 40, 54, 12, 25, 40, 55, 10, 24, 40, 56, 7, 22, 38, 55, 3, 19, 36, 54, 72, 17, 34, 53, 72
OFFSET
1,3
MATHEMATICA
r = Sqrt[5]; z = 13;
p[x_] := FractionalPart[x]; f[x_] := Floor[x];
w[n_, k_] := p[r^n] + p[r^k] - p[r^n + r^k]
Flatten[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
TableForm[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
s[n_] := Sum[w[n, k], {k, 1, n}] (* A194669 *)
Table[s[n], {n, 1, 100}]
h[n_, k_] := f[p[n*r] + p[k*r]]
Flatten[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
(* A194670 *)
TableForm[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
t[n_] := Sum[h[n, k], {k, 1, n}]
Table[t[n], {n, 1, 100}] (* A194671 *)
CROSSREFS
Cf. A194670.
Sequence in context: A035492 A101229 A057176 * A331696 A364837 A333651
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 01 2011
STATUS
approved