login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194670
Triangular array: T(n,k)=[<n*r>+<k*r>], where [ ] = floor, < > = fractional part, and r = sqrt(5).
3
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1
OFFSET
1
COMMENTS
n-th row sum gives number of k in [0,1] for which <n*r>+<k*r> > 1; see A194671.
EXAMPLE
First thirteen rows:
0
0 0
0 1 1
1 1 1 1
0 0 0 1 0
0 0 1 1 0 0
0 1 1 1 0 1 1
1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1 0 0
0 1 1 1 0 1 1 1 0 0 1
1 1 1 1 1 1 1 1 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0
MATHEMATICA
r = Sqrt[5]; z = 13;
p[x_] := FractionalPart[x]; f[x_] := Floor[x];
w[n_, k_] := p[r^n] + p[r^k] - p[r^n + r^k]
Flatten[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
TableForm[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
s[n_] := Sum[w[n, k], {k, 1, n}] (* A194669 *)
Table[s[n], {n, 1, 100}]
h[n_, k_] := f[p[n*r] + p[k*r]]
Flatten[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
(* A194670 *)
TableForm[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
t[n_] := Sum[h[n, k], {k, 1, n}]
Table[t[n], {n, 1, 100}] (* A194671 *)
CROSSREFS
Cf. A194671.
Sequence in context: A091247 A085137 A304577 * A130543 A185013 A346459
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 01 2011
STATUS
approved