login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194644
Number of ways to place 2n nonattacking kings on a 4 X 2n cylindrical chessboard.
9
12, 32, 90, 256, 732, 2102, 6060, 17536, 50922, 148352, 433500, 1270246, 3731532, 10987232, 32418810, 95835136, 283784412, 841611542, 2499330540, 7431221056, 22118855562, 65898914432, 196498594140, 586358987206, 1750864725132, 5231094261152, 15636995277210
OFFSET
1,1
COMMENTS
This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 4, number of rows = 2n).
FORMULA
a(n) = 2*3^n + 2*((3+sqrt(5))/2)^n + 2*((3-sqrt(5))/2)^n.
Recurrence: a(n) = 3*a(n-3) - 10*a(n-2) + 6*a(n-1).
G.f.: -2*(3-12*x+10*x^2)/((-1+3*x)*(1-3*x+x^2)).
MATHEMATICA
Table[2*3^n+2*LucasL[2n], {n, 25}]
Drop[CoefficientList[Series[-2*(3 - 12*x + 10*x^2)/((-1 + 3*x)*(1 - 3*x + x^2)), {x, 0, 27}], x], 1] (* or *) LinearRecurrence[{6, -10, 3}, {12, 32, 90}, 27] (* Indranil Ghosh, Mar 05 2017 *)
PROG
(PARI) print(Vec(-2*(3 - 12*x + 10*x^2)/((-1 + 3*x)*(1 - 3*x + x^2)) + O(x^27))); \\ Indranil Ghosh, Mar 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Aug 31 2011
STATUS
approved