OFFSET
1,3
COMMENTS
Schinzel and Wirsing proved that a(n) > C*log n, for any positive constant C < 1/log 2 and all large n. In fact, it appears that a(n) > n for all n > 115 (see A194260).
LINKS
Alois P. Heinz and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 2000 terms from Alois P. Heinz)
J. Cilleruelo and F. Luca, On the largest prime factor of the partition function of n
A. Schinzel and E. Wirsing, Multiplicative properties of the partition function, Proc. Indian Acad. Sci., Math. Sci. (Ramanujan Birth Centenary Volume), 97 (1987), 297-303; alternative link.
Eric Weisstein's World of Mathematics, Partition Function
Wikipedia, Partition function
EXAMPLE
p(1)*p(2)*...*p(8) = 1*2*3*5*7*11*15*22 = 2^2 * 3^2 * 5^2 * 7 * 11^2, so a(8) = 5.
MAPLE
with(combinat): with(numtheory):
b:= proc(n) option remember;
`if`(n=1, {}, b(n-1) union factorset(numbpart(n)))
end:
a:= n-> nops(b(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Aug 20 2011
MATHEMATICA
a[n_] := Product[PartitionsP[k], {k, 1, n}] // PrimeNu; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 28 2014 *)
PROG
(PARI) a(n)=my(v=[]); for(k=2, n, v=concat(v, factor(numbpart(k))[, 1])); #vecsort(v, , 8) \\ Charles R Greathouse IV, Feb 01 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Aug 20 2011
STATUS
approved