OFFSET
1,7
COMMENTS
Schinzel and Wirsing proved that a(n) > C*log n - n, for any positive constant C < 1/log 2 and all large n. In fact, it appears that a(n) > 0 for all n > 115.
It also appears that a(n) >= a(n-1), for all n > 97, so that some prime factor of p(n) does not divide p(1)*p(2)*...*p(n-1).
LINKS
Alois P. Heinz and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 2000 terms from Alois P. Heinz)
A. Schinzel and E. Wirsing, Multiplicative properties of the partition function, Proc. Indian Acad. Sci., Math. Sci. (Ramanujan Birth Centenary Volume), 97 (1987), 297-303; alternative link.
EXAMPLE
p(1)*p(2)*...*p(8) = 1*2*3*5*7*11*15*22 = 2^2 * 3^2 * 5^2 * 7 * 11^2, so a(8) = 5 - 8 = -3.
MAPLE
with(combinat): with(numtheory):
b:= proc(n) option remember;
`if`(n=1, {}, b(n-1) union factorset(numbpart(n)))
end:
a:= n-> nops(b(n)) -n:
seq(a(n), n=1..116); # Alois P. Heinz, Aug 20 2011
MATHEMATICA
a[n_] := PrimeNu[Product[PartitionsP[k], {k, 1, n}]] - n; Table[a[n], {n, 1, 116}] (* Jean-François Alcover, Jan 28 2014 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Jonathan Sondow, Aug 20 2011
STATUS
approved