login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A194113
a(n) = Sum_{j=1..n} floor(j*sqrt(10)); n-th partial sum of Beatty sequence for sqrt(10).
4
3, 9, 18, 30, 45, 63, 85, 110, 138, 169, 203, 240, 281, 325, 372, 422, 475, 531, 591, 654, 720, 789, 861, 936, 1015, 1097, 1182, 1270, 1361, 1455, 1553, 1654, 1758, 1865, 1975, 2088, 2205, 2325, 2448, 2574, 2703, 2835, 2970, 3109, 3251, 3396, 3544
OFFSET
1,1
COMMENTS
From Marius A. Burtea, Aug 22 2018: (Start)
a(2) = 9 = 3^2;
a(10) = 169 = 13^2;
a(76) = 9216 = 96^2;
a(783) = 970225 = 985^2;
a(5895) = 54952569 = 7413^2;
a(187507) = 55591265284 = 235778^2;
a(577771) = 527815327081 = 726509^2;
...
Does the sequence include an infinite number of perfect squares? (End)
LINKS
MATHEMATICA
Table[Sum[Floor[j*Sqrt[10]], {j, 1, n}], {n, 1, 90}]
PROG
(PARI) for(n=1, 50, print1(sum(k=1, n, floor(k*sqrt(10))), ", ")) \\ G. C. Greubel, Sep 24 2017
(Python)
from math import isqrt
def A194113(n): return sum(isqrt(10*j**2) for j in range(1, n+1)) # Chai Wah Wu, Jul 23 2024
CROSSREFS
Cf. A177102 (Beatty sequence for sqrt(10)).
Sequence in context: A045943 A134479 A184969 * A330010 A194114 A127759
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 16 2011
STATUS
approved