login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194110
Sum{floor(j*sqrt(5)) : 1<=j<=n}; n-th partial sum of Beatty sequence for sqrt(5).
1
2, 6, 12, 20, 31, 44, 59, 76, 96, 118, 142, 168, 197, 228, 261, 296, 334, 374, 416, 460, 506, 555, 606, 659, 714, 772, 832, 894, 958, 1025, 1094, 1165, 1238, 1314, 1392, 1472, 1554, 1638, 1725, 1814, 1905, 1998, 2094, 2192, 2292, 2394, 2499, 2606
OFFSET
1,1
LINKS
MAPLE
ListTools:-PartialSums([seq(floor(n*sqrt(5)), n=1..100)]); # Robert Israel, May 24 2020
MATHEMATICA
c[n_] := Sum[Floor[j*Sqrt[5]], {j, 1, n}];
c = Table[c[n], {n, 1, 90}]
CROSSREFS
Cf. A022839 (Beatty sequence for sqrt(5)).
Sequence in context: A349704 A005991 A266194 * A291876 A277365 A184432
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 15 2011
STATUS
approved