login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193984
Number of ways to arrange 6 nonattacking triangular rooks on an n X n X n triangular grid.
1
0, 0, 0, 0, 0, 0, 0, 0, 166, 4902, 54771, 382439, 1976455, 8250687, 29309540, 91705972, 258870740, 671005444, 1618468198, 3670491998, 7891420850, 16191666766, 31878943876, 60501909500, 111108316262, 198083991586, 343784805209
OFFSET
1,9
LINKS
Christopher R. H. Hanusa, Thomas Zaslavsky, A q-queens problem. VII. Combinatorial types of nonattacking chess riders, arXiv:1906.08981 [math.CO], 2019.
FORMULA
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: Recurrence: a(n-29) - 4*a(n-28) + 17*a(n-26) - 9*a(n-25) - 32*a(n-24) + 7*a(n-23) + 51*a(n-22) + 26*a(n-21) - 77*a(n-20) - 59*a(n-19) + 58*a(n-18) + 74*a(n-17) + 21*a(n-16) - 74*a(n-15) - 74*a(n-14) + 21*a(n-13) + 74*a(n-12) + 58*a(n-11) - 59*a(n-10) - 77*a(n-9) + 26*a(n-8) + 51*a(n-7) + 7*a(n-6) - 32*a(n-5) - 9*a(n-4) + 17*a(n-3) - 4*a(n-1) + a(n) = 0.
Empirical: G.f.: -x^9*(166 + 4404*x + 39567*x^2 + 205744*x^3 + 734283*x^4 + 1960827*x^5 + 4120441*x^6 + 7036145*x^7 + 9956248*x^8 + 11823233*x^9 + 11839707*x^10 + 10002936*x^11 + 7077533*x^12 + 4145811*x^13 + 1957821*x^14 + 721991*x^15 + 191674*x^16 + 31709*x^17)/((-1+x)^13*(1+x)^7*(1+x^2)*(1+x+x^2)^3).
Empirical: a(n) = 98227*n/10080 + 39907*n^2/180 - 1105267*n^3/1920 + 6516731*n^4/11520 - 7025857*n^5/23040 + 4788163*n^6/46080 - 3842803*n^7/161280 + 34619*n^8/9216 - 9299*n^9/23040 + 29*n^10/1024 - 3*n^11/2560 + n^12/46080 + 25/4*floor(n/4) + (56 - 38*n/3 + 2*n^2/3)*floor(n/3) + (12053/16 - 32515*n/48 + 22687*n^2/96 - 8249*n^3/192 + 279*n^4/64 - 15*n^5/64 + n^6/192)*floor(n/2) - 3*floor((1+n)/4) + (-184/3 + 38*n/3 - 2*n^2/3)*floor((1+n)/3).
(End)
EXAMPLE
Some solutions for 9 X 9 X 9
..........0..................0..................0..................0
.........0.0................0.0................0.0................0.1
........1.0.0..............0.0.0..............0.0.1..............0.0.0
.......0.0.0.0............1.0.0.0............0.0.0.0............1.0.0.0
......0.0.0.1.0..........0.0.0.1.0..........1.0.0.0.0..........0.0.0.0.0
.....0.0.1.0.0.0........0.1.0.0.0.0........0.0.0.1.0.0........0.0.0.1.0.0
....0.0.0.0.0.0.1......0.0.0.0.0.0.1......0.1.0.0.0.0.0......0.0.0.0.0.1.0
...0.1.0.0.0.0.0.0....0.0.0.0.0.1.0.0....0.0.0.0.1.0.0.0....0.0.1.0.0.0.0.0
..0.0.0.0.1.0.0.0.0..0.0.1.0.0.0.0.0.0..0.0.0.0.0.0.0.1.0..0.0.0.0.1.0.0.0.0
CROSSREFS
Column 6 of A193986.
Sequence in context: A204971 A204964 A241969 * A144380 A204963 A011815
KEYWORD
nonn
AUTHOR
R. H. Hardin Aug 10 2011
STATUS
approved