login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193983
Number of ways to arrange 5 nonattacking triangular rooks on an n X n X n triangular grid.
2
0, 0, 0, 0, 0, 0, 6, 270, 3195, 21273, 101484, 386052, 1243899, 3527469, 9035376, 21297492, 46838142, 97131762, 191517192, 361427508, 656353494, 1152094086, 1961910990, 3251400894, 5257953789, 8315944731, 12888836064, 19609755396
OFFSET
1,7
LINKS
Christopher R. H. Hanusa, Thomas Zaslavsky, A q-queens problem. VII. Combinatorial types of nonattacking chess riders, arXiv:1906.08981 [math.CO], 2019.
FORMULA
Empirical: a(n) = 5*a(n-1) -5*a(n-2) -14*a(n-3) +30*a(n-4) +6*a(n-5) -50*a(n-6) +10*a(n-7) +44*a(n-8) -44*a(n-10) -10*a(n-11) +50*a(n-12) -6*a(n-13) -30*a(n-14) +14*a(n-15) +5*a(n-16) -5*a(n-17) +a(n-18).
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: G.f.: -3*x^7*(2 + 80*x + 625*x^2 + 2244*x^3 + 4898*x^4 + 7197*x^5 + 7237*x^6 + 5030*x^7 + 2294*x^8 + 633*x^9)/((-1+x)^11*(1+x)^5*(1+x+x^2)).
Empirical: a(n) = 3461*n/320 - 469*n^2/240 - 469*n^3/15 + 2383*n^4/64 - 76607*n^5/3840 + 23693*n^6/3840 - 2263*n^7/1920 + 53*n^8/384 - 7*n^9/768 + n^10/3840 + 4/3*floor(n/3) + (1359/32 - 247*n/8 + 245*n^2/32 - 13*n^3/16 + n^4/32)*floor(n/2) - 4/3*floor((1 + n)/3).
(End)
EXAMPLE
Some solutions for 7 X 7 X 7
........0..............0..............0..............0..............0
.......0.0............0.0............0.0............0.0............0.0
......0.1.0..........0.1.0..........0.0.1..........1.0.0..........0.0.1
.....1.0.0.0........0.0.0.1........1.0.0.0........0.0.0.1........0.1.0.0
....0.0.0.0.1......1.0.0.0.0......0.0.0.1.0......0.1.0.0.0......1.0.0.0.0
...0.0.0.1.0.0....0.0.1.0.0.0....0.1.0.0.0.0....0.0.0.0.1.0....0.0.0.0.1.0
..0.0.1.0.0.0.0..0.0.0.0.1.0.0..0.0.0.0.1.0.0..0.0.1.0.0.0.0..0.0.0.1.0.0.0
CROSSREFS
Column 5 of A193986.
Sequence in context: A244493 A221900 A229773 * A348701 A233234 A281694
KEYWORD
nonn
AUTHOR
R. H. Hardin Aug 10 2011
STATUS
approved