login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to arrange 6 nonattacking triangular rooks on an n X n X n triangular grid.
1

%I #18 Aug 19 2019 16:49:46

%S 0,0,0,0,0,0,0,0,166,4902,54771,382439,1976455,8250687,29309540,

%T 91705972,258870740,671005444,1618468198,3670491998,7891420850,

%U 16191666766,31878943876,60501909500,111108316262,198083991586,343784805209

%N Number of ways to arrange 6 nonattacking triangular rooks on an n X n X n triangular grid.

%H R. H. Hardin, <a href="/A193984/b193984.txt">Table of n, a(n) for n = 1..37</a>

%H Christopher R. H. Hanusa, Thomas Zaslavsky, <a href="https://arxiv.org/abs/1906.08981">A q-queens problem. VII. Combinatorial types of nonattacking chess riders</a>, arXiv:1906.08981 [math.CO], 2019.

%F Contribution from _Vaclav Kotesovec_, Aug 31 2012: (Start)

%F Empirical: Recurrence: a(n-29) - 4*a(n-28) + 17*a(n-26) - 9*a(n-25) - 32*a(n-24) + 7*a(n-23) + 51*a(n-22) + 26*a(n-21) - 77*a(n-20) - 59*a(n-19) + 58*a(n-18) + 74*a(n-17) + 21*a(n-16) - 74*a(n-15) - 74*a(n-14) + 21*a(n-13) + 74*a(n-12) + 58*a(n-11) - 59*a(n-10) - 77*a(n-9) + 26*a(n-8) + 51*a(n-7) + 7*a(n-6) - 32*a(n-5) - 9*a(n-4) + 17*a(n-3) - 4*a(n-1) + a(n) = 0.

%F Empirical: G.f.: -x^9*(166 + 4404*x + 39567*x^2 + 205744*x^3 + 734283*x^4 + 1960827*x^5 + 4120441*x^6 + 7036145*x^7 + 9956248*x^8 + 11823233*x^9 + 11839707*x^10 + 10002936*x^11 + 7077533*x^12 + 4145811*x^13 + 1957821*x^14 + 721991*x^15 + 191674*x^16 + 31709*x^17)/((-1+x)^13*(1+x)^7*(1+x^2)*(1+x+x^2)^3).

%F Empirical: a(n) = 98227*n/10080 + 39907*n^2/180 - 1105267*n^3/1920 + 6516731*n^4/11520 - 7025857*n^5/23040 + 4788163*n^6/46080 - 3842803*n^7/161280 + 34619*n^8/9216 - 9299*n^9/23040 + 29*n^10/1024 - 3*n^11/2560 + n^12/46080 + 25/4*floor(n/4) + (56 - 38*n/3 + 2*n^2/3)*floor(n/3) + (12053/16 - 32515*n/48 + 22687*n^2/96 - 8249*n^3/192 + 279*n^4/64 - 15*n^5/64 + n^6/192)*floor(n/2) - 3*floor((1+n)/4) + (-184/3 + 38*n/3 - 2*n^2/3)*floor((1+n)/3).

%F (End)

%e Some solutions for 9 X 9 X 9

%e ..........0..................0..................0..................0

%e .........0.0................0.0................0.0................0.1

%e ........1.0.0..............0.0.0..............0.0.1..............0.0.0

%e .......0.0.0.0............1.0.0.0............0.0.0.0............1.0.0.0

%e ......0.0.0.1.0..........0.0.0.1.0..........1.0.0.0.0..........0.0.0.0.0

%e .....0.0.1.0.0.0........0.1.0.0.0.0........0.0.0.1.0.0........0.0.0.1.0.0

%e ....0.0.0.0.0.0.1......0.0.0.0.0.0.1......0.1.0.0.0.0.0......0.0.0.0.0.1.0

%e ...0.1.0.0.0.0.0.0....0.0.0.0.0.1.0.0....0.0.0.0.1.0.0.0....0.0.1.0.0.0.0.0

%e ..0.0.0.0.1.0.0.0.0..0.0.1.0.0.0.0.0.0..0.0.0.0.0.0.0.1.0..0.0.0.0.1.0.0.0.0

%Y Column 6 of A193986.

%K nonn

%O 1,9

%A _R. H. Hardin_ Aug 10 2011