The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193893 Triangular array:  the self-fusion of (p(n,x)), where p(n,x)=sum{(k+1)(n+1)*x^(n-k) : 0<=k<=n}. 2
 1, 2, 4, 12, 28, 44, 36, 90, 150, 210, 80, 208, 360, 520, 680, 150, 400, 710, 1050, 1400, 1750, 252, 684, 1236, 1860, 2520, 3192, 3864, 392, 1078, 1974, 3010, 4130, 5292, 6468, 7644, 576, 1600, 2960, 4560, 6320, 8176, 10080, 12000, 13920, 810 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. LINKS EXAMPLE First six rows: 1 2....4 12...28....44 36...90....150...210 80...208...360...520....680 150..400...710...1050...1400...1760 MATHEMATICA z = 9; p[n_, x_] := Sum[(k + 1) (n + 1)*x^(n - k), {k, 0, n}] q[n_, x_] := p[n, x]; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193893 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]]  (* A193894 *) CROSSREFS Cf. A193722. Sequence in context: A148174 A232218 A292065 * A096581 A275434 A151258 Adjacent sequences:  A193890 A193891 A193892 * A193894 A193895 A193896 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 18:09 EDT 2021. Contains 347473 sequences. (Running on oeis4.)