The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193600 Indices n such that Padovan(n) < r^n/(2*r+3) where r is the real root of the polynomial x^3-x-1. 0
 1, 2, 4, 7, 9, 12, 14, 15, 17, 19, 20, 22, 25, 27, 30, 32, 33, 35, 37, 38, 40, 43, 45, 48, 50, 51, 53, 56, 58, 61, 63, 64, 66, 68, 69, 71, 74, 76, 79, 81, 82, 84, 86, 87, 89, 92, 94, 97, 99, 100, 102, 104, 105, 107, 110, 112, 113, 115, 117, 118, 120, 123 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS R is the so-called plastic number (A060006). Padovan(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r (real), s, t are the three roots of x^3-x-1. Also Padovan(n) is asymptotic to r^n / (2*r+3). LINKS EXAMPLE For n=25, Padovan(25) = A000931(25) = 200 < 200.023... = r^25/(2*r+3). MATHEMATICA lim=200; R = Solve[x^3 - x - 1 == 0, x][[1, 1, 2]]; powers = Table[Floor[R^n/(2*R + 3)], {n, lim}]; p = Rest[CoefficientList[Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, lim}], x]]; Select[Range[lim], p[[#]] <= powers[[#]] &] (* T. D. Noe, Aug 01 2011 *) CROSSREFS Cf. A000931, A060006. Sequence in context: A299234 A213273 A027904 * A190429 A239009 A287074 Adjacent sequences:  A193597 A193598 A193599 * A193601 A193602 A193603 KEYWORD nonn AUTHOR Francesco Daddi, Jul 31 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 02:56 EDT 2020. Contains 334613 sequences. (Running on oeis4.)